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Motivation

Experimental limits for WIMP-Nucleon cross section
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[XENON Collaboration 2012, arXiv:1207.5988 [astro-ph]]

Patrick deNiverville (University of Victoria) | Light Dark Matter at Neutrino Experiments September 10, 2013 2 /24



A Low Mass Dark Matter Scenario

Hidden Sector

Light Mediator

1

Standard Model
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@ V can be produced through kinetic mixing with v at O(x2).

@ x serves as Dark Matter candidate, couples to SM through the V.
» 2m, < my for production in V-decay, keep V lifetime short.

@ The U(1) coupling strength o/ must be kept small to maintain

perturbativity.

» We set o ~ aem, but could be varied quite widely.

@ Requiring that Q, ~ Quatter relates k, o/, my and my [Pospelov, AR
& Voloshin '07] .
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Scenario Parameter Space
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Dark Force Parameter Space

my =10MeV o' =«

107!

1072

J/4 — invisible —.
Monojet (CDF) ——

—3 ete”
10 Muon g-2 ——
70 = ~ + invisible
Kt 5ot + invisible
Amz and EW fit ——

| | Relic density ——
0.01 0.1 1 BaBar Sensitivity e
my (GeV) 107 o !
The standard dark force limit plot e
. "t plot Adapted for a dark matter scenario with
my < 2m,, [Intensity Frontier Workshop, my > 2m-.. short lived V and
Hewett, Werts et al '12] v N

BR(V — DM) ~ 1.

u]

)
1l

n
it

DA

Patrick deNiverville (University of Victoria) | Light Dark Matter at Neutrino Experiments



Fixed Target Neutrino Experiments
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Target Charged Mesons Neutrino Beam Detector

Proton Beam

nt, K+

e Experiments involve impacting a target with ~ 10%° — 10?2 protons to

produce a high intensity neutrino beam.

» Neutrinos produced from decays of charged mesons.
» Can select for neutrino or antineutrino beams through the use of

magnetic focusing horns.
@ Non-neutrinos are removed from the beam before it reaches the

target to reduce background.
@ Several fixed target neutrino experiments were investigated: LSND,

MiniBooNE, T2K, MINOS.
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Dark Matter Beams

o Fixed target neutrino experiments could also produce large numbers
of light, hidden sector particles.

@ So long as they are long-lived and neutral under SM gauge groups
they could reach the neutrino detector, too.

» Results in the production of a dark matter beam alongside the neutrino
beam.

@ Examined two production methods: neutral meson decay and direct

parton-level production.
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Detecting Dark Matter with Neutrino Detectors
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@ In the most straightforward analyses, without special timing or energy
cuts, dark matter signal manifests as neutral-current-like elastic
scattering events in excess of those expected from neutrinos.

» For our analyses, neutrino events are the background. Need to generate
a significant number of excess events to obtain useful sensitivity.
@ Interaction channel chosen for analysis of each experiment dependent
on backgrounds and the neutral-current elastic scattering analyses
published.
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LSND
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MiniBooNE
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T2K - POD
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T2K - POD
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Reducing the Neutrino Background

@ Sensitivity can be improved by either reducing the number of
neutrinos reaching the detector, or by differentiating between likely
neutrino and dark matter events.

» Timing Cuts - DM beam takes longer to reach the detector than
neutrino beam.

» Energy Cuts - DM energy distribution peaks at a higher energy than
the neutrino distribution.

o Target-off/Beam Dump runs

» Can dramatically decrease the neutrino flux by sending a proton beam
directly into the beam dump, while leaving DM flux largely unchanged.

» Proposal submitted for extra 2 x 10%° POT off-target run at
MiniBooNE. [arXiv:1211.2258v1, with Richard Van de Water] .

25m Deployable Beam Dump 50m Fixed Beam Dump

Proton Beam WIMP beam travels ~ 515m

Be Target T

50m decay pipe
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MiniBooNE Proposal
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Conclusion

@ Thermal relic WIMP with a sub-GeV mass and interactions mediated
by a light U(1)" vector boson provides a viable dark matter candidate.

@ This candidate escapes many of the best limits imposed by direct,
indirect and collider searches.

o Fixed Target Neutrino Facilities possess sensitivity to these
hidden-sector scenarios.

» Capable of probing regions of the hidden-sector parameter space
currently inaccessible to other techniques while using a straightforward
counting approach.

» MiniBooNE can provide great limits on V' masses below m,,.

» T2K provides sensitivity at O(1GeV).

@ Running a Fixed Target Neutrino Experiment in an off target mode
could provide new sensitivity, while requiring far fewer POT

@ Backgrounds in all cases can be further reduced by introducing timing
and energy cuts.

» Experiments with far detectors, such as T2K with Super-K, may be
able to completely seperate dark matter events from neutrino events
using timing cuts.
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Choosing a Portal

There is a limited set of low dimension (relevant or marginal) operators
which can be used to write the interactions between a neutral hidden
sector and the Standard Model:

@ Vector Portal: A new U(1) vector (V) kinetically mixed with
hypercharge. Oy = —5VH'B,,.

e Higgs Portal: A scalar sector (S) coupled to the Higgs.
Oy = NsS?HTH

@ Neutrino Portal: A set of Right-Handed neutrino-like Majorana
fermions. O = Y/ Li HVW

While all three can produce dark matter candidates we will focus our
attention on the bilinear interactions of the Vector and Higgs Portals.
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Choosing a Portal

For my >2m,
e U(1)’ Mediator - Vector Portal

» Fermionic DM - s-wave annihilation and an increased dark matter
number density due to the low dark matter mass results in a visible
distortion of the CMB. Also leads to a more visible signal from galactic
center. [Padmanabhan & Finkbeiner et al '05; Slatyer et al '08]

» Scalar DM - p-wave annihilation allows this scenario to be viable for
small k, as the annihilation rate is suppressed by an additional factor of
v. A small v heavily suppresses the dark matter annihilation rate.

o Scalar Mediator - Higgs Portal

» Scalar DM - s-wave annihilation excludes this scenario for the reasons
given previously.

» Fermionic DM - p-wave annihilation renders this model viable.

However, fermionic DM requires a large mixing, which could affect B
decays. [Bird, Kowalewski & Pospelov 2006]
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Experimental Constraints
Cosmological:

o Big Bang Nucleosynthesis - So long as mpyr > 1 — 2 MeV, freeze-out
occurs before BBN [Serpico & Raffelt '04, Jedamzik & Pospelov '09] .

@ Cosmic Microwave Background - Annihilation through p-wave, has
little effect [Padmanabhan & Finkbeiner et al '05; Slatyer et al '08] .

Particle Physics:

@ Electron and muon g — 2 - Affects the value of g — 2. Quite strong at

low mass, but weakens with increasing mass [Fayet; Pospelov '08;] .
» Can also bring theoretical value of muon g — 2 into closer agreement
with experimental value.

@ V — [T/~ - Weak so long as BR(V — 2x) ~ 1, holds for most of
parameter space of interest. [Bjorken et al. '09; Batell et al '09;
Reece & Wang '09; MAMI '11, APEX '11, BaBar'12, .. ]

@ Missing energy in rare decays

» Sensitivity to low my provided by 7, K decays. [E949]
> Need to use J/¢, T(1S) decays for higher masses of m,. [BESII'08,
BaBar'09, Fayet'09]
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Dark Force Parameter Space
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Effect on g-2
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Direct Detection Parameter Space
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LSND
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MiniBooNE Proposal

25m Deployable Beam Dump 50m Fixed Beam Dump

Proton Beam WIMP beam travels ~ 515m

Be Target T
50m decay pipe

@ Can direct the proton beam around the target and into the 50m
absorber to reduced neutrino signal by factor of ~ 40.

» Optionally, could also deploy a 25m absorber to reduced backgrounds
by a factor of ~ 80.

@ MiniBooNE has a timing resolution of ~ 1.8ns. Can impose a timing
cut of 3 ns to remove 90% of the neutrino signal.

» Can increase cut to 6 ns to remove 99.9% of neutrino signal.
» Does reduce sensitivity to lower dark matter masses.

[arXiv:1211.2258v1, with Richard Van de Water]
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